Columbia University in the City of New York
J. F. TRAUB
New York, N.Y. 10027
EDWIN HOWARD ARMSTRONG PROFESSOR

18 February, 1997

Dear Gwen:

Enclosed is the abstract for the first talk that I ever gave on what was to become information-based complexity. George Forsythe chaired the session. I can still remember how he introduced me: "We'll let the paper speak for itself."

You might note that the conference proceedings went for \$4.00.

PREPRINTS
 OF
 PAPERS PRESENTED
 AT THE

NATIONAL
meeting
OF THE
ASSOCIATION
FOR COMPUTING
MACHINERY
AT
LOS ANGELES
CALIFORNIA
SEPTEMBER 5-8
1961

ON FUNCTIONAL ITERATION AND THE CALCULATION OF ROOTS

$$
\begin{aligned}
& \text { lave } \\
& \text { since } \\
& \text { ? word } \\
& \text { pras. } \\
& \text { use } \\
& \text { llowed }
\end{aligned}
$$

he

e give ${ }^{2}{ }^{w}$ Ones, $_{8}$

by
J. F. Traub
Bell Telephone Laboratories, Incorporated Murray Hill, New Jersey

This paper has the dual objectives of (1) setting theoretical limits to the -ates of convergence of iteration processes towards the zeros of a function when the riues of the function, or the values of the function and its derivatives, are availsble and (2) suggesting new families of computationally effective iteration formulas.

The proofs of the theorems stated, numerical verification of theoretical error estimates, various specific applications, and results concerning work on variations of the themes reported here, will appear later.

I. NOTATION AND DEFINITIONS

We wish to solve $f(x)=0$ where $f(x)$ is a real valued function of a real variable. A root α is of multiplicity m if $f(x)=(x-\alpha)^{m} g(x)$ and $g(\alpha) \neq 0$. We define a sequence of approximants x_{1}. In Section II, the x_{i} will be generated by a one point iteration function via $x_{1+1}=F\left(x_{1}\right)$. In Section III, the x_{1} will be generated by a multipoint iteration function via $x_{i+1}=F\left(x_{1}, x_{1-1}, \ldots, x_{i-n}\right)$. High derivatives of $f(x)$ are denoted by $f^{(l)}(x)$. Low derivatives are denoted by $f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$. ${ }^{(l)}\left(x_{1}\right)$ is often abbreviated by $f_{1}^{(l)}$ or $f^{(l)}$. For later convenience, we abbreviate $\mathrm{s} / \mathrm{f}^{\prime}$ by u .

Let $\varepsilon_{i}=x_{i}-\alpha . F$ defines an iteration procedure of order p if $\lim _{i \rightarrow \infty} x_{i}=\alpha$ and $\lim _{i \rightarrow \infty}\left(\varepsilon_{i+1} /\left(\varepsilon_{i}\right)^{p}\right)=C_{p} \neq 0$. Iteration functions will be considered which involve the values of $f(x)$ and its derivatives. Thus $F(x)=G\left(x, f(x), f^{\prime}(x), \ldots\right.$, $\left.f^{(s)}(x)\right)$. If $F(x)$ involves the first s derivatives of $f(x)$ and is of order p, we write $\mathrm{F} \varepsilon \mathrm{s}^{I}$. We will assume that $f(x)$ and $F(x)$ are sufficiently regular in the neighborhood of α.

II. ONE POINT ITERATION FUNCTIONS

It is easy to show that if $x_{1+1}=F\left(x_{1}\right)$, then p is an integer and it is well known that a necessary and sufficient condition that F be of order p is that $F(\alpha)=\alpha$ and $F^{(l)}(\alpha)=0, l=1,2, \ldots, p-1$, with $F^{(p)}(\alpha) \neq 0$. Furthermore, $C_{p}=F^{(p)}(\alpha) / p!$. For p fixed, there exist an infinite number of iteration functions of order p under the constraint of

Theorem (1) Let the order of F_{1} be p_{1} and the order of F_{2} be p_{2} where F_{1} and F_{2} are arbitrary iteration functions. Then $F_{1}(x)=F_{2}(x)^{2}+V(x) u^{P}$ where
$p=\min \left[p_{1}, p_{2}\right]$ and $V(\alpha)$ exists. Conversely, let $F_{1}(x)=F_{2}(x)+V(x)_{u} p$ where the order of F_{2} is p_{2} and $V(\alpha) \neq 0$. If $p_{2} \neq p$, then $p_{1}=\min \left[p_{2}\right.$ while if $p_{2}=p$, then $p_{1} \geq p$.
In [1], the author considered a method for constructing iteration function arbitrary order for the case $m=1$. In the notation of [1], let F be a polynomial 4 defined by $F_{s}^{E} \equiv x-u \sum_{j=0}^{S-1} Y_{j} u^{j}$. Let $D_{j}=f^{(j)} / f^{\prime}$. We have
Theorem (2) Y_{j} is a polynomial in $D_{1}, D_{2}, \ldots, D_{j+1}$.
Theorem (3) Let $m=1$. Then $F_{S}^{E} \varepsilon S_{S} I_{S+1}$ and $C_{S+1}^{j+1}=Y_{s}(\alpha)$.
The importance of $\mathrm{F}_{\mathrm{S}}^{\mathrm{E}}$ is that we know its structure and by using Theorem (1) we can study general iteration functions of order p. We now state the fundamental theorem.
Theorem (4) Let $m=1$. There exists an $F \varepsilon_{s} I_{s+1}$, and if $F \varepsilon_{l^{I} s+1}$, then $l \geq s$. This theorem should come as no surprise to those familiar with iteration formulas. But it has never been formally stated and proved.
Corollary (4.1) If $m>l$ and m is known, then there exists an $F \varepsilon I_{s+1}$ in which m appears explicitly, and if $F \varepsilon_{l^{I}}{ }_{s+l}$, then $\ell \geq \mathrm{s}$ 。
Corollary (4.2) If $m>l$ and m is not known, then there exists an $F \varepsilon_{s+1} I_{s+1}$, and F $\varepsilon_{l^{I} s+1}$, then $l \geq s+1$.
Theorem (5) If F_{S}^{E} (which does not depend explicitly on m) is used when $m>1$, the ${ }_{F}^{F} \varepsilon_{s}{ }_{s} I_{1}$.
We conjecture that this is true for arbitrary F. A proof of an analogous theorem due to Bodewig appears incorrect. We have
Conjecture (I) Let $F \varepsilon_{s} I_{s+1}$ for $m=I$ and assume that F does not depend explicitily on m. If F is used when $m>1$, then $F \varepsilon{ }_{s} I_{1}$.
A general estimate of C_{p} which does not involve the calculation of $F^{p}(\alpha)$ given by
Theorem (6) Let $m=1$. Let F be of order $s+1$. Let $G_{S}(x)=\left(F-F_{S}^{F}\right) /(u)^{s+1}$. Then $C_{s+1}=Y_{s}(\alpha)+G_{s}(\alpha)$.
 Assoc. Comp. Mach., June, 1961.
$d F_{2}$ are re
$+V(x) u^{p}$ $=\min \left[p_{2}\right.$,
functions nomial in
zorem (1), nental
$\geq \mathrm{s}$ 。
:ation
rhich m
-1, and is
> 1, then
logous
licitly
$F^{p}(\alpha)$ is

Then

Comm.

Corollary (4.2) assures us of the existence of an $F=s_{s+1}$, for $m>1$, if Is known. Such a formula is given explicitly by
-heorem (7) Let $F_{s}^{E}(x, m)=x-u \sum_{j=0}^{s-1} T_{s, j}(m) Y_{j}(x) u^{j}$ where $T_{s, j}(m)=\sum_{l=j}^{s-1} e_{l, j}(m)$, and the $\varepsilon_{\ell, j}(\dot{m})$ are given by the recursion formula
$(l+1) e_{\ell, j}(m)+(m(j+1)-l) e_{l-1, j}(m)-m(j+1) e_{l-1, j-1}(m)=0$, with $e_{0,0}=m, e_{l-1,-1}=0, e_{l, j}=0$, for $\ell<j$. Then $F_{s}^{E}(x, m)={ }_{s} I_{s+1}$, for all A general estimate of $C_{s+1}(m)$ for $F_{s}^{E}(x, m)$ is given by
 formula, $(\ell+2)_{\ell+1, s}-(\ell+1) B_{\ell, s}+\sum_{k=\ell+1}^{s} k_{\ell, k} B_{0, s+l-k}=0$, for $s>\ell+1$, and where $B_{0, l}$, for $l \geq 1$, is given by $\sum_{k=m}^{r} k a_{k} B_{0, r+l-k}=m a_{r}$, with $a_{r}=f^{(r)}(\alpha) / r!$.
III. MULTIPOINT ITERATION FUNCTIONS

It will be shown that with $x_{1+1}=F\left(x_{1}, x_{1-1}, \ldots, x_{1-n}\right)$ the order of F is nonintegral. Thus, for Section III, we define $\delta_{i}=\left|\varepsilon_{i}\right|$.

The secant method may be considered as constructed from Newton's formula with f_{1}^{\prime} estimated from $x_{1}, x_{1-1}, f_{1}, f_{1-1}$. Then, as is well known, $\delta_{1+1}=K \delta_{1} \delta_{1-1}$. This diffe: ence equation has the characteristic equation $t^{2}-t-1=0$ and the solution $\delta_{i+1}=C\left(\delta_{i}\right)^{p}$. with $p=(1+\sqrt{5}) / 2 \simeq 1.62$. Thus, the order of the secant method compares favorably with the order of Newton's method while not requiring the calculation of any derivative: This is important, for it is the calculation of $f(x)$ and its derivatives which requires most of the computation time of an iteration procedure. We will give two broad general: zations of the secant method. We will estimate derivatives using $n+1$ points, rather th two points, and we will estimate $f_{1}^{(s)}$ rather than f_{1}^{\prime}. The approximate differentiation formulas to be given are of interest in themselves.

$$
\text { Define }{ }_{n}^{*} f_{i}(s)=\sum_{l=0}^{s-1} \sum_{j=0}^{n} A_{l, j^{s}, n_{i-j}}(l) \text { where the } A_{l, j}^{s, n} \text { are calculated by differen- }
$$

tiating a Hermite interpolation formula s times. The general error term is given by Theorem (9) Let ${ }_{n} f_{1}(s)$ be defined as above. Let $r=s(n+1)$ and let θ lie in the inter$\operatorname{val}\left(x_{1}, x_{i-1}, \ldots, x_{1-n}\right)$. Let $h_{j}=x_{i}-x_{1-j}$. Then

$$
{ }_{n}^{*} f_{i}^{(s)}-f_{i}^{(s)}=I_{r, s, n} \prod_{j=1}^{n}\left(h_{j}\right)^{s} \quad \text { with } \quad I_{r, s, n}=-f^{(r)}(\theta) s!/ r!
$$

The general difference equation for the iteration error is given by

Theorem (10) Let $m=1$ and let $F \varepsilon_{S_{s+1}}$. Let ${ }^{*} F$ be generated from F by estimating $f_{i}(s)$ by ${ }_{n} f_{i}(s)$. Then

$$
\delta_{i+1}=K_{r} \prod_{j=0}^{n}\left(\delta_{i-j}\right)^{s} \quad \text { where } \quad K_{r}=\left|f^{(r)}(\alpha) / r!f^{\prime}(\alpha)\right|
$$

We state a number of lemmas before giving the main theorem.
Lemma (11.1) The difference equation of Theorem (10) has the characteristic equation $P(n, s, t)=0$, where $P(n, s, t)=t^{n+1}-s \sum_{j=0}^{n} t^{j}=0$.
Lemma (11.2) Let s be a positive integer. Then the equation $P(n, s, t)=0$ has a real root of multiplicity l between s and $s+l$ and all other roots are less tha: 1 in magnitude.
Lemma (11.3) Let $q=(p-1) /(r-1)$. The solution of the difference equation of Theorem is given by $\delta_{i+1}=C_{q, r}\left(\delta_{i}\right)^{p}$ where $s<p<s+1$ and where $C_{q, r}=\left|K_{r}\right|^{q}$. Note that the solution of the difference equation is independent of F.
We are now ready to state the fundamental theorem of this part of the theory.
Theorem (11) Let $m=1$. Let $F \varepsilon s_{s}{ }_{s+1}$. Let

$$
\begin{aligned}
& { }^{*} F=q\left(x_{i}, f_{1}, \ldots,{ }_{n}^{*} f_{i}(s)\right)=q\left(x_{1}, f_{1}, \ldots, f_{i}^{(s-1)}, x_{1-1}, f_{1-1}, \ldots, f_{i-1}^{(s-1)}, \ldots,\right. \\
& \left.\quad x_{1-n}, f_{1-n}, \ldots, f_{1-n}(s-1)\right)={ }^{*} F\left(x_{1}, x_{1-1}, \ldots, x_{1-n}\right) . \text { Then }{ }^{*}{ }_{F} \varepsilon_{s-1} I_{p}, \text { with } \\
& s<p<s+1, \text { and } \lim _{n \rightarrow \infty} p=s+1 .
\end{aligned}
$$

In particular, with $s=2, n=1$, we have
(3) $F=x-u-u^{2}\left(\begin{array}{l}* \\ I^{\prime \prime} \\ \end{array} 2 f^{\prime}\right) ; \quad{ }_{I^{\prime}} \mathrm{f}^{\prime \prime}=-6\left(f_{1}-f_{1-1}\right) / h_{1}^{2}+2\left(2 f_{1}^{\prime}+f_{1-1}^{\prime}\right) / h_{1}$;

$$
\delta_{i+1}=\left|f^{(4)}(\alpha) / 24 f^{\prime}(\alpha)\right|\left(\delta_{i}\right)^{2}\left(\delta_{i-1}\right)^{2} ; \quad c=\left|f^{(4)}(\alpha) / 24 f^{\prime}(\alpha)\right| \cdot 58 ; \quad p=2.73
$$

This formula is particularly useful since it gives a formula of order $1+\sqrt{3} \simeq 2.73$ while using no more information than Newton's formula.

Theorem (11) states that if old iteration information is used in a particule way, that is, to approximate $f_{i}^{(s)}$, all this old information adds less than one to the order of the iteration, per step. We conjecture that this is true no matter how the old information is used.
Conjecture (2) Let $m=1$. Let $F=G\left(x_{1}, f_{1}, \ldots, f_{i}^{(l)}, x_{1-1}, f_{1-1}, \ldots, f_{i-1}^{(l)}, \ldots, x_{1-n}\right.$, $\left.f_{i-n}, \ldots, f_{i-n}^{(l)}\right)$ with G arbitrary. Let $F \varepsilon_{l^{\prime} p}^{I_{p}}$, with $p \geq s+1$. Then $\ell \geq \mathrm{s}$. In particular, if no derivative information is used, it is impossible to construct an iterative method of order 2.

Columbia University in the City of New York
 J. F. TRAUB
 EDWIN HOWARD ARMSTRONG PROFESSOR Computer Science Building (212) 280-2736 939-7013

18 February, 1997

Ms. Gwen Bell
450 Old Oak Court
Los Altos, CA 94022
Dear Gwen:

Enclosed is the requested iconograph. I hope this is the kind of thing you are looking for.

Also enclosed is a very brief biosketch as well as a longer one.

Pamela and I often think of you guys. Please give our best to Gordon.

83 James Avenue
Atherton, CA 94027-2009
12 February 1997
Gwen Bell, Director
The Historical Collections
The Computer Museum
History Center
P. O. Box 3038

Stanford, CA 94309-3038
VIA FEDERAL EXPRESS TO: 450 Old Oak Court, Los Altos CA 94022
Dear Ms. Bell:
In response to your e-mail message of 2/7/97 to Paul Baran, please find the following four items:

1. The "five" sentences. (Sorry, it's a little longer.)
2. Some graphic pages for the 1964 RAND memoranda "On Distributed Communications" that first set out packet switching.
3. Copy of the first paper on the subject, published in the March 1964 issue of the IEEE Transactions on Communications Systems. I have also included a reprint of the article.
4. A copy of the 1965 RAND Recommendation to the Air Force to proceed with the development. Describes packet switching payoffs, how it would be done, costs and benefits, and a summary of each of the series of about a dozen memoranda describing the details.

The only physical artifact is a box of slides that Mr. Baran used in about 50 briefings around the country selling the concept of packet switching in the 1960's.

Yours truly,

Lee Shapiro
Assistant to Paul Baran
(415) 323-4053 or
(415) 493-5971

```
From: Len_Shustek@ngc.com
Mime-Version: 1.0
Date: Wed, 26 Feb 1997 14:52:04 -0800
To: Dag Spicer <spicer@tcm.org>
Cc: "Gwen Bell" <bell@tcm.org>
Subject: Re: Exhibit Text
Status: RO
Content-Type: text/plain; charset=US-ASCII
Content-Transfer-Encoding: 7bit
Content-Description: cc:Mail note part
Sorry that I haven't had much time to spend on the text. Here's a
start. Maybe later tonight I'll can do some more. -- Len
```

IBM 729 Magnetic Tape Unit
Introduced: 1957, for the IBM 709 computer
Medium: iron-oxide coated 1/2" mylar tape
Speed: 75 inches/second read/write, 500 inches/second rewind
Density: 7 tracks, 200 bits/inch (later 556 bpi and 800 bpi$)$
Throughput: 15,000 characters/second
Capacity: About 5 million characters on a 2400 foot reel
The 729 was the workhorse mass storage device for IBM mainframe
computers of the late 50's and early 60's. It was the first to have
the "two gap" head that allowed data to be read and checked while it
was being written.

The vacuum columns that allow the tape to start and stop faster than the reels were introduced in 1953 with the 726 tape drive, and had been prototyped in the lab using a vacuum cleaner! Other companies used a higher-inertia tape reservoir with multiple spring-loaded pulleys, which had a greater tendency to snap the tape.

```
IBM 1403 Line Printer
```

Introduced: 1959, for the the 1401 data processing system
Print mechanism: Rotating type slug chain with hammers that strike
through the paper from the other side
Print speed: 600 lines per minute, maximum
Chain speed: 90 inches per second
Paper speed: 6.6 inches per second when not printing
Number of columns: 100 or 130
Line spacing: 6 or 8 lines per inch
Character spacing: 10 characters per inch
Number of different characters: 48 , with 5 repeat sets per chain
At the time of its introduction the 1403 printer was a radical
innovation in high-speed printers but it quickly became the standard
printer for IBM computer systems. Although there were faster
wire-matrix printers from both IBM and CDC, the 1403 continued the
tradition of high-quality formed characters that had been set a decade
earlier by the 407 accounting machine.
The spacing of type slugs on the chain is wider than that of the print
hammers. At each alignment point, every third hammer has the
opportunity to fire if the type slug opposite it carries the desired
character.

```
PDP-10 Cable Set
-----------------
Mainframe computers consisted of many independent boxes connected
together, often by cables that run underneath a raised floor. These
are *some* of the cables needed to interconnect the components of a
Digital Equipment Corporation PDP-10 computer.
```

Cray-2 Computer

Introduced: 1985
Speed: About 100 million floating point operations per second per processor
Processors: four background processors; one foreground processor
Clock: 4.1 nanosecond (243 Mhz)
Memory: 256 million 64 -bit words
Seymour Cray is the legendary supercomputer designer who was killed in
an automobile accident in October 1996. The Cray-2 was the second
major computer designed by Cray Research Incorporated, which Cray
formed after leaving Control Data Corporation in 1976.
Cooling is a major problem for supercomputers, and in the Cray-2 the
circuit cards are totally immersed in an inert flurocarbon that had
previously been used as a blood substitute. The computer was sometimes
called the "bubble machine" because of the bubbles of vaporized coolant
that arose from the warm cards.
Seymour Cray always felt that what a computer looked like was
important. "I've enjoyed the aesthetics part of building computers ...
clearly your own personality [is] being projected in the product."
Digital Equipment Corporation VAX 11/750
Introduced: 1979
Clock: 6 Megahertz
Microcode: 6 K 80 -bit words
Power consumption: about 3000 watts with typical peripherals
The $11 / 750$ was the second of the VAX computers, and was designed for
lower cost and lower performance. The standard machine implemented
flaoting point operation in software (microcode), but an accelerator
was a higher-priced option.
The VAX line of minicomputers was the successor to the earlier and very
successful PDP-11 series. "VAX" meant "Virtual Address Extension",
indicating the large address space compared to the earlier computers.
Content-Type: text/plain; charset=US-ASCII; name="RFC822 message headers"
Content-Transfer-Encoding: 7bit
Content-Description: cc:Mail note part
Content-Disposition: inline; filename="RFC822 message headers"
Received: from NGC.COM (161.69.2.3) by internet-mail.ngc.com with SMTP
(IMA Internet Exchange 2.1 Enterprise) id 0000B1EB; Wed, 26 Feb 97 08:30:20
-0800
Received: from ngcgate.ngc.com by NGC.COM (4.1/SMI-4.1/Paul-NetGen-vegas-950920)
id AA24141; Wed, 26 Feb 97 08:32:26 PST
Received: from mailhub.Stanford.EDU by ngcgate.ngc.com with smtp

The
Computer
Museum

Computer History Center nO Fox 308 S

FAX TRANSMISSION
PAGES (INCLUSIVE): 2
DATE: $2 / 10 / 97$
TIME: \qquad
To: FRASER MCC
teL: 7148639434 FAX: $\overline{717} 5531676$ FROM: DAG SPICER
DETAILS:
\qquad
Here is some dimensional

RECEPTION PROBLEMS? PLEASE CALL: +1 4085627919 FOR IMMEDIATE ASSISTANCE.

The Computer Auseum History Center
Accession Number: X460.84

The Computer Museum History Center
Accession Number: X329.84

The Computer Museum History Cenier
Accession Number: X137.82
||||||||||||||||||||||||||||||||||

The Computer Museum History Center
Accession Number: X1395.97

The Computer Museum History Center
Accession Number: X1031.90

The Computer Museum History Center
Accession Number: X1055.91

The Computer Museum History Center
Accession Number: X1111.92

The Computer Museum History Center
Accession Number: X124.82

The Computer Museum History Center
Accession Number: X137.82

The Computer Museum History Center
Accession Number: X233.83

The Computer Museum History Center
Accession Number: X1031.90

The Computer Museum History Center
Accession Number: X1500.97
|||

Calvin Grayson
Sales • Fabricator

TAP Plastics, Inc. 312 Castro Street
Mountain View, California 94041
(415) 962-8430 FAx (415) 962-0572

1/8 clear

1/8 lean

23
open bottom O14.5

(2) ead

1/8 Clear
0.5 oper. bottow

DAG SPRCER
THE COMPOTER MOSEUN
Tel: 4085627937
fov: $408 \quad 9882874$
-black mounting surface

- ${ }^{2}$ L. for core plane B ($4 \times 61 / 2$ antifent) weld

Instructions and Comments

Material \$	
Labor	
Subtotal	104-0.5
Sales Tax	+
Total \$	Thre Cravent
Deposit	\checkmark
Balance \$	

S.O. \# or Zippo \#

Bellevue WA - 206 861-0940 fax 206 869-9813	San Francisco CA - 415 864-7360 fax 415 864-3177
Cupertino CA - 408 252-8600 fax 408 252-3517	San Jose CA - 408 292-8685 fax 408 292-0161
Dublin CA - 510 828-7744 fax 510 828-1179	San Jose CA - 408 265-6400 fax 408 265-1479
El Cerrito CA - 510 525-3508 fax 510 525-4503	San Leandro CA - 510 357-3755 fax 510 357-4761
Fremont CA - 510 796-3550 fax 510 796-0444	San Mateo CA - 415 344-7127 fax 415 344-5706
Mountain View CA - 415 962-8430 fax 415 962-0572	San Rafael CA - 415 454-6393 fax 415 454-8385
Pittsburg CA - 510 778-1223 fax 510 778-6024	Santa Rosa CA - 707 544-5772 fax 707 544-0630
Pleasant Hill CA - 510 798-0420 fax 510 798-0360	Stockton CA - 209 957-2036 fax 209 957-0177
Portland OR - 503 230-0770 fax 503 230-1275	Tigard OR • 503 230-0770 fax 503 230-1275
Sacramento CA - 916 481-7584 fax 916 481-3036	TAP Plastics Inc - Corporate Office - Dublin CA 9456
Sacramento CA - 916 429-9551 fax 916 429-9579	
Salesperson	Store \#

\qquad Authorization

How MANY PEOPLE have a CHANCE OF DRAMATICALLY AFFECTING THE WAY the WORLD WORKS?

When one of those
CHANCES COMES ALONG, TAKE IT - COME TO ACM97.

ACM97

THE NEXT 50 YEARS OF COMPUTING
Conference, March 3-5, 1997
Exposition, March 1-4, 1997
san Jose, California, USA

Conference Speakers March 3-5, 1997

GORDON BELL

Considered as the "Father of the Minicomputer," Bell led the National Research Network panel that became the NII/GII, and was one of the authors of the first High Performance Computer and Communications Initiative. He has written widely about computer structures and start-up companies: High Tech Ventures: The Guide to Entrepreneurial Success describes the Bell-Mason Diagnostic for analyzing new ventures.
Speaking on: The folly of prediction. Bell will explore the absurdity of straightforward extrapolation of current trends over the next 50 years. Can the development of technology and its impacts be extrapolated from current trends? By the year 2047, Bell says, One Chip Systems (OCSs) of up to 300,000 terabyte memories will support all information in Cyberspace; and asks whether we will then be able to build the long-forecasted systems that hear, see, and remember everything.

JOEL BIRNBAUM

A pioneer in the development of distributed computer system architecture, real-time data acquisition, analysis and control, and RISC processor architecture, Birnbaum has been elected to the National Academy of Engineering and is a board member of the Corporation for National Research Initiatives, the Technion University of Israel, the Tech Museum of Innovation, and the Euphrat Museum of Art.
Speaking on: Evolution and impacts of electronic and non-electronic, biological and optical computing technologies.

FOR IMMEDIATE RELEASE
Contact:
For ACM97:
Christopher Morgan
617-262-2044
morgan@acm.org
Peter Tulupman
TSI Public Relationsfor ACM97
212-320-2217
ptulupman@tsipr.com
The Computer History Center:
Carol Welsh
415-323-1909
welsh@tcm.org

Special "Wizards and Their Wonders" Exhibit From Computer History Center To Kick Off "ACM97: The Next Fifty Years of Computing" Conference and Exposition

San Jose, California, February 27, 1997. "ACM97: The Next Fifty Years of Computing" will be ushered in on February 28 by "Wizards and Their Wonders," a unique exhibit sponsored by the Computer Museum's History Center and featuring one-of-a-kind computer artifacts and speciallycommissioned photographs of the inventors taken by famed photographer Louis Bachrach. "Wizards and Their Wonders" will be unveiled at a special reception on February 28, 1997 from 6:30-9 PM in the foyer of the San Jose Convention Center in San Jose, California, and will remain on display free to the public throughout the ACM97 conference and Exposition.

The exhibit is part of ACM97: The Next Fifty Years of Computing," a conference and Exhibition about the far future of computing to be held March 1-5, 1997, also at the San Jose Convention Center. ACM97 will spark discussion and debate, with insights and comment from global leaders in industry, academia, research, government and conference participants. Associated with ACM97 is a web site (www.acm.org/acm97/) and a specially commissioned book, "Beyond Calculation," published by Copernicus.

The Museum's Founding President and former President of the ACM, Gwen Bell, said "We're delighted to be ushering in the ACM97 festivities with this special exhibit. It's especially appropriate since the ACM is celebrating its fiftieth anniversary this year. Our exhibit gives people a chance to look back on the past fifty years as they begin to speculate about the next fifty.
"In addition to key pieces from the Computer Museum History Center, we'll have many one-of-akind artifacts generously loaned from private collections. We're especially pleased that Louis Bachrach has provided us with special portraits of the many computer pioneers represented in the exhibit."

1515 BROADWAY, NEW YORK, NY 10036-5701 U.S.A. TEL + 1-212-869-7440 FAX + 1-212-944-1318

Among the many artifacts on display will be Gary Starkweather's "engine" for the first laser printer; a framed Apple 1 board on loan from Scott Cook; one of the first core memory planes from Jay Forrester's Whirlwind computer; and a console from an IBM 360/40 mainframe computer. Also featured will be the prototype of the Busicom calculator, which was the first commercial product to feature a microprocessor, the Intel 4004. Among the many specially commissioned portraits will be those of Erich Bloch, Fred Brooks, and Bob Evans.

Together they will examine the long-term future of information technology and its impacts. The Conference runs from March 3-5. Tens of thousands of people are expected to attend the Exposition portion of ACM97, which is free and open to the public for from March 1 through March 4. The Exposition will transform the convention center into a world of high-tech pavilions and computer-animation theaters highlighting a variety of computing domains and will demonstrate how each will impact our future.

About the History Center

Since its inception, the History Center has played a significant role in industry events with a historical theme. The History Center opened with a celebration of the 25th anniversary of the microprocessor in San Jose at the annual Microdesign Resources Conference. One result was a 25 year timeline poster produced jointly with Microdesign Resources. Additionally, the History Center provided artifacts and curatorial assistance to Intel, Microsoft, and Ziff-Davis for a museum on the microprocessor at the 1996 Fall COMDEX. For more information about the Computer Museum and the History Center, visit www.tcm.org

About ACM97:

ACM97 is the celebration of the 50th anniversary of the ACM (Association for Computing). Tens of thousands of people are expected to attend the Exposition portion of ACM97 that is free and open to the public. It will feature high-tech pavilions and computer-animation theaters highlighting a variety of computing domains and will demonstrate how each will affect our future.

Nearly two thousand futurists, policy makers and thought leaders will attend a three-day series of presentations by some of the industries foremost authorities. The ACM97 web site (www.acm.org/acm97/) will serve as a continuing forum for discussion on the long-term future of computing, and an associated book entitled "Beyond Calculation, The Next 50 Years of Computing" will be published by Copernicus, a division of Springer-Verlag and distributed at ACM97 and worldwide thereafter.

